Plant Biostimulants for Use in Agriculture

Ute Albrecht

UF/IFAS, Southwest Florida Research and Education Center ualbrecht@ufl.edu

FBGA Spring Meeting - 9 March 2023

What are plant biostimulants?

Mycorrhizae

Beneficial bacteria

Trichoderma

Seaweed extracts

Protein hydrolysates

Chitosan

Humic acids

Silicon

Snake oils or beneficial products?

Many scientific publications report beneficial effects of biostimulants on a wide range of different crops

Plant biostimulant effects

https://edis.ifas.ufl.edu/publication/HS1330

Definition

"A substance or micro-organism that, when applied to seeds, plants, or the rhizosphere, stimulates natural processes to enhance or benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, or crop quality and yield."

2018 Farm Bill

https://www.bpia.org/2018/12/biostimulants-in-farm-bill/

Alternative definition have been proposed:

https://www.epa.gov/pesticides/draft-guidance-plant-regulators-and-claims-including-plant-biostimulants

Market size

https://www.grandviewresearch.com/industry-analysis/biostimulants-market

US market

Categories

- Humic and Fulvic acids
- Seaweed Extracts
- Beneficial Bacteria
- Beneficial Fungi

- Silicon
- Chitosan

Humic and Fulvic Acids

- Largest constituents of the soil organic matter
- Result from the decomposition of plant, animal and microbial residues and the interaction between the organic matter, microbes and plant roots
- They form dynamic aggregates that are composed of different types of molecules

Non-renewable sources → natural humidified organic matter (peat, volcanic soils), mineral deposits (leonardite)

Renewable sources \rightarrow compost, vermicompost

- Decrease in color intensity
- Decrease in polymerization
- Decrease of molecular weight
- Decrease of carbon content
- Increase in degree of solubility

Reported effects

- Enhanced efficiency of nutrient use
- Improved lateral root development
- Phytohormonal effects
- Capacity to chelate metal ions
- Ideal carriers for beneficial microbes

Although high in nutrients and organic matter, humic substances have a very slow rate of mineralization.

- → Not appropriate as direct source of nutrients or as replacement for N and P based fertilizers
- Positive effects are not related to nutrient content

Polyanionic nature

- \rightarrow increase the **cation exchange capacity** of the soil
- \rightarrow improved nutrient retention and nutrient use efficiency

Soils rich in humic substances: **nutrient retention**

Challenges

Effects are highly dependent on:

- Plant species
- Plant developmental stage
- Mode and rate of application
- Humic substances source
- Environmental conditions
- Management

Seaweed Extracts

Seaweed Extracts

The most used seaweeds in agriculture are the brown seaweeds (Ascophyllum nodosum, Fucus spp., Laminaria spp., etc.)

Seaweed extracts

The major components of seaweeds are polysaccharides:

Alginates: Polymers of mannuronic and guluronic acids

Plant growth-promoting activities

Laminarins: Polymers of glucose → Important elicitors of plant defense responses

Seaweed Extracts

- In soils, the polysaccharides contribute to gel formation, water retention, and aeration
- Metal-chelating properties
- Medicinal uses: hydrogels, wound dressings

https://advancedtissue.com/2015/09/treating-woundswith-absorbent-alginate-dressings/

https://www.materialstoday.com/amorphous/articles/s136 9702115003375/

Seaweed extracts

Inorganic components

Essential plant elements

Organic components

- Amino acids
- Phenolic compounds (antioxidant activity, metal chelating properties)
- Betaines and betaine analogs (osmoprotection)
- Phytohormones

Н

`OH

HO

Betaine

Ю

Challenges

- The extraction process used by different manufacturers varies considerably (alkali extraction, acid extraction, cell burst technology, etc.)
- → Not all seaweed extracts are the same the same raw material processed differently results in extracts with different characteristics
- Effects depend on crop type, timing and frequency of application and developmental stage of the plant

Plant Growth Promoting Bacteria (PGPB) Plant Growth Promoting Rhizobacteria (PGPR)

- Free-living bacteria inhabiting the zone around the root (ectorhizosphere).
- Bacteria colonizing the root surface (rhizoplane).
- Bacteria living within the roots (endorhizosphere).

Image source: https://www.nature.com/scitable/knowledge/library/the-rhizosphere-roots-soil-and-67500617

Genera

Rhizobium, Bacillus, Pseudomonas, Azospirillum, etc.

https://apsjournals.apsnet.org/doi/10.1094/PBIOMES-12-16-0019-RVW

- Improve root structure
- Improve water use efficiency
- Improve nutrient uptake
- Inhibit growth of soil-borne plant pathogens
- Increase disease resistance

Nitrogen fixation

Symbiotic rhizobacteria invade the root hairs and stimulate formation of root nodules where they convert free nitrogen to ammonia.

(Image source: https://www.britannica.com/science/nitrogen-fixation)

- PGPB can produce siderophores (small high affinity Fe³⁺ chelating compounds)
 - → Reduce growth of deleterious soil-borne pathogens

 PGPB can produce different plant hormones (auxins, cytokinins, gibberellic acid) or induce hormonal changes in the plant

 PGPRs can emit volatile organic compounds (VOCs) which promote plant growth

Tahir et al (2017), BMC 17:133, https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-017-1083-6

 Commercial formulations of VOCs containing 2,3 butanediol (2,3 BD) and other VOCs increase plant tolerance to pathogens

Challenges

- Survival during formulation storage
- Optimization of the mode of inoculation
- Selection of the proper strain for each plant/soil system
- Persistence of PGPBs in the soil
- Compatibility with chemical fertilizers and standard crop production chemical

Beneficial Fungi

Arbuscular mycorrhizal fungi (AMF)

- AMF are formed between plant roots and fungi in the phylum *Glomeromycota*
- Most wide-spread plant symbionts
- Formed by 80-90% of plant species including vegetables, tree crops and herbal plants
- Common genera used commercially: Rhizophagus, Glomus and Funneliformes

AMF

Life cycle

AMF effects

Formation of a web of roots and hyphae \rightarrow

- Extension of the root system beyond the depletion zone
- Enhanced water uptake
- Enhanced nutrient uptake
- Improved stress tolerance

hydrodynamicsintl.com

AMF effects

- AMF are best known for their effect on improving phosphorous use efficiency, especially in P depleted soils
- AMF can immobilize detrimental metals in the fungal biomass

Influence of crop management practices

POSITIVE
 Higher diversity of host plants (including agricultural crops, cover crops and weeds)

NEGATIVE

- Non-mycorrhizal host plants (Brassicacea)
- Soil tillage
- Enhanced irrigation
- High nutrient supply
- Herbicides
- Some fungicides

Tansley review

Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops

Author for correspondence: Megan H. Ryan Tel: +61 8 6488 2208 Email: megan.ryan@uwa.edu.au

Received: 3 November 2017 Accepted: 30 May 2018 Megan H. Ryan¹ D and James H. Graham²

¹School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; ²Department of Soil and Water Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA

M.H. Ryan & J.H.Graham (2018). New Phytologist 220:1092-1107

Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops

Trichoderma

Often found on dead wood and bark. Parasitize other fungi → Biocontrol of phytopathogenic fungi such as Fusarium, Rhizoctonia, and Pythium

Image sources: https://www.projectnoah.org/spottings/8840348; http://allplantprotection.blogspot.com/ 2012/04/trichoderma-multi-useful-fungi.html

Trichoderma

One of the most used microbial *biopesticides*. Composed of a single Trichoderma isolate or a mixture of Trichoderma species.

Commonly used species:

- T. harzianum
- T. asperellum
- T. atroviride
- T. virens
- T. viride

Trichoderma

Biofertilizers

- Modulation of root architecture
- Exudation of siderophores and organic acids
- Increase of plant hormonal levels
- Increase of plant antioxidant compounds

Challenges

Possible interaction with other plant microorganisms, such as AMF.

\rightarrow Positive synergistic effects

→ Possible negative effects, which may result in inhibition of plant growth

Silicon

Silicon

- Silicon is the second most abundant element in the earth's crust
- Not essential for plant nutrition except in some monocotyledons
- In the soil solution Si occurs mainly as monomeric silicic acid (H₄SiO₄) → easily taken up by plants

Silicon

- Si is easily absorbed by the roots and transported via the transpiration stream
- Accumulation in the plant tissue is mainly in form of solid amorphous silica around the stomata, in the cell wall, or in intercellular spaces or
- Increased mechanical strength
- Increased light interception and photosynthesis

Phytolith

Chitin and Chitosan

 Chitin is a natural component found in insect exoskeletons, and crustacean shells, fungal cell walls, and nematode eggshells

Chitosan can be <u>solubilized</u> in weak organic acids

Both chitin and chitosan are polymers of N-acetyl-Dglucosamine and D-glucosamine

Chitosan is a deacetylated form of chitin

The difference in starting materials, preparation process, degree of acetylation can greatly affect the physical properties and biostimulant effects on plants

 Induction of local and systemic acquired resistance → enhanced resistance to pathogens

Reduction of transpiration (stomatal closure)

1% citric acid + 1% chitosan

1% chitosan

Antibacterial, antifungal, and
antiviral properties
→ frequently used as

- seed coating agents
- foliar treatments
- post-harvest coatings of fruits and vegetables
- \rightarrow prevent postharvest decay \rightarrow increase shelf-life

Zhang et al, J. Food Nutr. (2017) 144-150

Summary

Biostimulant effects are variable and depend on:

- Plant system (species, age, etc.)
 - Source and composition of materials used
- Dose and manner of application
- Management practices
- Different environmental conditions

\rightarrow Their mode of action is mostly unknown

→ Results are inconsistent, but effects are said to be better under stress conditions

Biostimulant research at SWFREC

Ongoing research at SWFREC

CRDF #19-030C and USDA-NIFA ECDRE #2020-70029-33202

Ute Albrecht ualbrecht@ufl.edu

UF IFAS Extension UNIVERSITY of FLORIDA